3800-PM-BCW0100m Rev. 2/2016 BMP Effectiveness Values pennsylvania DEPARTMENT OF ENVIRONMENTAL PROTECTION ## COMMONWEALTH OF PENNSYLVANIA DEPARTMENT OF ENVIRONMENTAL PROTECTION BUREAU OF CLEAN WATER # NATIONAL POLLUTANT DISCHARGE ELIMINATION SYSTEM (NPDES) STORMWATER DISCHARGES FROM SMALL MUNICIPAL SEPARATE STORM SEWER SYSTEMS BMP EFFECTIVENESS VALUES This table of BMP effectiveness values (i.e., pollutant removal efficiencies) is intended to be used by MS4s that are developing and implementing Pollutant Reduction Plans and TMDL Plans to comply with NPDES permit requirements. The values used in this table generally consider pollutant reductions from both overland flow and reduced downstream erosion, and are based primarily on average values within the Chesapeake Assessment Scenario Tool (CAST) (www.casttool.org). The Department of Environmental Protection (DEP) will update the information contained in this table as new information becomes available. Interested parties may submit information to DEP for consideration in updating this table to DEP's MS4 resource account, RA-EPPAMS4@pa.gov. Where an MS4 proposes a BMP not identified in this document, CAST or other expert panel reports published by the Chesapeake Bay Program Office should be used for BMP effectiveness values. Note — TN = Total Nitrogen and TP = Total Phosphorus. | BMP Name | BMP Effectiveness Values | | | DMD Description | |---|--------------------------|-----|----------|--| | DIVIP Name | TN | TP | Sediment | BMP Description | | Wet Ponds and Wetlands | 20% | 45% | 60% | A water impoundment structure that intercepts stormwater runoff then releases it to an open water system at a specified flow rate. These structures retain a permanent pool and usually have retention times sufficient to allow settlement of some portion of the intercepted sediments and attached nutrients/toxics. Until recently, these practices were designed specifically to meet water quantity, not water quality objectives. There is little or no vegetation living within the pooled area nor are outfalls directed through vegetated areas prior to open water release. Nitrogen reduction is minimal. | | Dry Detention Basins and
Hydrodynamic Structures | 5% | 10% | 10% | Dry Detention Ponds are depressions or basins created by excavation or berm construction that temporarily store runoff and release it slowly via surface flow or groundwater infiltration following storms. Hydrodynamic Structures are devices designed to improve quality of stormwater using features such as swirl concentrators, grit chambers, oil barriers, baffles, micropools, and absorbent pads that are designed to remove sediments, nutrients, metals, organic chemicals, or oil and grease from urban runoff. | | Dry Extended Detention
Basins | 20% | 20% | 60% | Dry extended detention (ED) basins are depressions created by excavation or berm construction that temporarily store runoff and release it slowly via surface flow or groundwater infiltration following storms. Dry ED basins are designed to dry out between storm events, in contrast with wet ponds, which contain standing water permanently. As such, they are similar in construction and function to dry detention basins, except that the duration of detention of stormwater is designed to be longer, theoretically improving treatment effectiveness. | | DMD Nome | BMP Effectiveness Values | | | PMD Decaying ion | |--|--------------------------|-----|-----|---| | BMP Name TN TP Sediment BMP Des | BMP Description | | | | | Infiltration Practices w/
Sand, Veg. | 85% | 85% | 95% | A depression to form an infiltration basin where sediment is trapped and water infiltrates the soil. No underdrains are associated with infiltration basins and trenches, because by definition these systems provide complete infiltration. Design specifications require infiltration basins and trenches to be built in good soil, they are not constructed on poor soils, such as C and D soil types. Engineers are required to test the soil before approval to build is issued. To receive credit over the longer term, jurisdictions must conduct yearly inspections to determine if the basin or trench is still infiltrating runoff. | | Filtering Practices | 40% | 60% | 80% | Practices that capture and temporarily store runoff and pass it through a filter bed of either sand or an organic media. There are various sand filter designs, such as above ground, below ground, perimeter, etc. An organic media filter uses another medium besides sand to enhance pollutant removal for many compounds due to the increased cation exchange capacity achieved by increasing the organic matter. These systems require yearly inspection and maintenance to receive pollutant reduction credit. | | Filter Strip Runoff Reduction | 20% | 54% | 56% | Urban filter strips are stable areas with vegetated cover on flat or gently sloping land. Runoff entering the filter strip must be in the form of sheet-flow and must enter at a non-erosive rate for the site-specific soil conditions. A 0.4 design ratio of filter strip length to impervious flow length is recommended for runoff reduction urban filter strips. | | Filter Strip Stormwater
Treatment | 0% | 0% | 22% | Urban filter strips are stable areas with vegetated cover on flat or gently sloping land. Runoff entering the filter strip must be in the form of sheet-flow and must enter at a non-erosive rate for the site-specific soil conditions. A 0.2 design ratio of filter strip length to impervious flow length is recommended for stormwater treatment urban filter strips. | | Bioretention – Raingarden
(C/D soils w/ underdrain) | 25% | 45% | 55% | An excavated pit backfilled with engineered media, topsoil, mulch, and vegetation. These are planting areas installed in shallow basins in which the storm water runoff is temporarily ponded and then treated by filtering through the bed components, and through biological and biochemical reactions within the soil matrix and around the root zones of the plants. This BMP has an underdrain and is in C or D soil. | | Bioretention / Raingarden
(A/B soils w/ underdrain) | 70% | 75% | 80% | An excavated pit backfilled with engineered media, topsoil, mulch, and vegetation. These are planting areas installed in shallow basins in which the storm water runoff is temporarily ponded and then treated by filtering through the bed components, and through biological and biochemical reactions within the soil matrix and around the root zones of the plants. This BMP has an underdrain and is in A or B soil. | | BMP Name | BMP Effectiveness Values | | | DMD Description | |--|--------------------------|-----|----------|--| | выг нате | TN | TP | Sediment | BMP Description | | Bioretention / Raingarden
(A/B soils w/o underdrain) | 80% | 85% | 90% | An excavated pit backfilled with engineered media, topsoil, mulch, and vegetation. These are planting areas installed in shallow basins in which the storm water runoff is temporarily ponded and then treated by filtering through the bed components, and through biological and biochemical reactions within the soil matrix and around the root zones of the plants. This BMP has no underdrain and is in A or B soil. | | Vegetated Open Channels
(C/D Soils) | 10% | 10% | 50% | Open channels are practices that convey stormwater runoff and provide treatment as the water is conveyed, includes bioswales. Runoff passes through either vegetation in the channel, subsoil matrix, and/or is infiltrated into the underlying soils. This BMP has no underdrain and is in C or D soil. | | Vegetated Open Channels
(A/B Soils) | 45% | 45% | 70% | Open channels are practices that convey stormwater runoff and provide treatment as the water is conveyed, includes bioswales. Runoff passes through either vegetation in the channel, subsoil matrix, and/or is infiltrated into the underlying soils. This BMP has no underdrain and is in A or B soil. | | Bioswale | 70% | 75% | 80% | With a bioswale, the load is reduced because, unlike other open channel designs, there is now treatment through the soil. A bioswale is designed to function as a bioretention area. | | Permeable Pavement w/o
Sand or Veg.
(C/D Soils w/ underdrain) | 10% | 20% | 55% | Pavement or pavers that reduce runoff volume and treat water quality through both infiltration and filtration mechanisms. Water filters through open voids in the pavement surface to a washed gravel subsurface storage reservoir, where it is then slowly infiltrated into the underlying soils or exits via an underdrain. This BMP has an underdrain, no sand or vegetation and is in C or D soil. | | Permeable Pavement w/o
Sand or Veg.
(A/B Soils w/ underdrain) | 45% | 50% | 70% | Pavement or pavers that reduce runoff volume and treat water quality through both infiltration and filtration mechanisms. Water filters through open voids in the pavement surface to a washed gravel subsurface storage reservoir, where it is then slowly infiltrated into the underlying soils or exits via an underdrain. This BMP has an underdrain, no sand or vegetation and is in A or B soil. | | Permeable Pavement w/o
Sand or Veg.
(A/B Soils w/o underdrain) | 75% | 80% | 85% | Pavement or pavers that reduce runoff volume and treat water quality through both infiltration and filtration mechanisms. Water filters through open voids in the pavement surface to a washed gravel subsurface storage reservoir, where it is then slowly infiltrated into the underlying soils or exits via an underdrain. This BMP has no underdrain, no sand or vegetation and is in A or B soil. | | Permeable Pavement w/
Sand or Veg.
(A/B Soils w/ underdrain) | 50% | 50% | 70% | Pavement or pavers that reduce runoff volume and treat water quality through both infiltration and filtration mechanisms. Water filters through open voids in the pavement surface to a washed gravel subsurface storage reservoir, where it is then slowly infiltrated into the underlying soils or exits via an underdrain. This BMP has an underdrain, has sand and/or vegetation and is in A or B soil. | | DMD Name | BMP Effectiveness Values | | | DMD December of | |---|--------------------------|--------------------|--------------------|---| | BMP Name | TN | TP | Sediment | BMP Description | | Permeable Pavement w/
Sand or Veg.
(A/B Soils w/o underdrain) | 80% | 80% | 85% | Pavement or pavers that reduce runoff volume and treat water quality through both infiltration and filtration mechanisms. Water filters through open voids in the pavement surface to a washed gravel subsurface storage reservoir, where it is then slowly infiltrated into the underlying soils or exits via an underdrain. This BMP has no underdrain, has sand and/or vegetation and is in A or B soil. | | Permeable Pavement w/
Sand or Veg.
(C/D Soils w/ underdrain) | 20% | 20% | 55% | Pavement or pavers that reduce runoff volume and treat water quality through both infiltration and filtration mechanisms. Water filters through open voids in the pavement surface to a washed gravel subsurface storage reservoir, where it is then slowly infiltrated into the underlying soils or exits via an underdrain. This BMP has an underdrain, has sand and/or vegetation and is in C or D soil. | | Stream Restoration | 0.075
lbs/ft/yr | 0.068
lbs/ft/yr | 44.88
lbs/ft/yr | An annual mass nutrient and sediment reduction credit for qualifying stream restoration practices that prevent channel or bank erosion that otherwise would be delivered downstream from an actively enlarging or incising urban stream. Applies to 0 to 3rd order streams that are not tidally influenced. If one of the protocols is cited and pounds are reported, then the mass reduction is received for the protocol. | | Forest Buffers | 25% | 50% | 50% | An area of trees at least 35 feet wide on one side of a stream, usually accompanied by trees, shrubs and other vegetation that is adjacent to a body of water. The riparian area is managed to maintain the integrity of stream channels and shorelines, to reduce the impacts of upland sources of pollution by trapping, filtering, and converting sediments, nutrients, and other chemicals. (Note – the values represent pollutant load reductions from stormwater draining through buffers). | | Tree Planting | 10% | 15% | 20% | The BMP effectiveness values for tree planting are estimated by DEP. DEP estimates that 100 fully mature trees of mixed species (both deciduous and non-deciduous) provide pollutant load reductions for the equivalent of one acre (i.e., one mature tree = 0.01 acre). The BMP effectiveness values given are based on immature trees (seedlings or saplings); the effectiveness values are expected to increase as the trees mature. To determine the amount of pollutant load reduction that can credited for tree planting efforts: 1) multiply the number of trees planted by 0.01; 2) multiply the acreage determined in step 1 by the pollutant loading rate for the land prior to planting the trees (in lbs/acre/year); and 3) multiply the result of step 2 by the BMP effectiveness values given. | | Street Sweeping | 3% | 3% | 9% | Street sweeping must conducted 25 times annually. Only count those streets that have been swept at least 25 times in a year. The acres associated with all streets that have been swept at least 25 times in a year would be eligible for pollutant reductions consistent with the given BMP effectiveness values. | **Commented [OE1]:** Note this may change significantly due to the CB expert panel report. | BMP Name | BMP Effectiveness Values | | | BMP Description | |----------------------|--------------------------|-----|----------|--| | DIVIP Name | TN | TP | Sediment | BMP Description | | Sediment Filter Bags | 20% | 40% | 80% | The BMP effectiveness values for sediment filter bags are estimated by DEP. This BMP involves the installation of a filter bag within stormwater inlets to capture sediment. Filter bags should be capable of trapping all particles not passing a No. 40 Sieve. The design should be in accordance with DEP's Erosion and Sediment Pollution Control Program Manual (363-2134-008). Maintenance and replacement of bags must occur according to manufacturer specifications. Installation of filter bags for pollutant credit is limited to drainage areas no greater than one-half acre unless the MS4 applicant can provide justification for larger drainage areas. In general, use on major paved roadways should not be considered where ponding may cause traffic hazards. This BMP is well suited for vehicle maintenance areas and other municipal or industrial operations. DEP will allow pollutant removal credit of no more than 50% of the required reductions for this BMP. | **Commented [OE2]:** What was the method used for the estimated values? Commented [OE3]: Is there a general rule that can be placed in here for O&M? I feel like if we leave it up to the permittees we may have issues with no knowing where to find the info or making up their own schedule, etc. **Commented [OE4]:** In the example in the PRP instructions, this practice was choosen for a majority of the CBs in the entire community. We want to make sure the messaging is clear to permittees when this practice will be most effective.